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Abstract
Abel’s integral equations arise in many areas of natural science and engineering,
particularly in plasma diagnostics. This paper proposes a new and effective
approximation of the inversion of Abel transform. This algorithm can be
simply implemented by symbolic computation, and moreover an nth-order
approximation reduces to the exact solution when it is a polynomial in r2 of
degree less than or equal to n. Approximate Abel inversion is expressed in terms
of integrals of input measurement data; so the suggested approach is stable for
experimental data with random noise. An error analysis of the approximation
of Abel inversion is given. Finally, several test examples used frequently in
plasma diagnostics are given to illustrate the effectiveness and stability of this
method.

PACS numbers: 52.70.−m, 02.30.Zz

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Abel’s integral equations are frequently encountered in a variety of physical problems and
engineering applications such as geophysics [1], astrophysics [2], ocean acoustic tomography
[3], radio science [4], image reconstruction [5], optics [6] and so on. In particular, in flame
and plasma diagnostics [7], the radial profile of the plasma emission coefficient or electron
density can be reconstructed from measured radiation intensity or integrated phase shifts.

Usually, the plasma is assumed to be optically thin, and has a cylindrical symmetry.
Under such circumstances, the measured intensity of radiation I (y) is related to the emission
coefficient g(r) of light source with radial distribution according to an integral over a line-of-
sight chord or Abel transform
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Figure 1. Schematic of a geometry of a cylindrically symmetric radiation source and the
corresponding coordinates.

I (y) =
∫ √

1−y2

−
√

1−y2
g(r) dx = 2

∫ 1

y

g(r)r√
r2 − y2

dr, (1)

where y is the position of a chord from the plasma centre, r(r2 = x2 + y2) the radial distance
from the plasma centre, as shown in figure 1. Here I (1) = 0 is a boundary condition based
on consideration of physical backgrounds of discrete problems, and the radius of the plasma
cylinder is normalized to unity.

Knowledge of an exact analytical form of I (y) can directly give Abel inversion as follows:

g(r) = − 1

π

∫ 1

r

I ′(y)√
y2 − r2

dy, (2)

where I ′(y) = dI/dy is the derivative of I (y) with respect to y. However, unfortunately this
Abel inversion fails in practical applications. The reason is that the derivative involved is ill-
posed, and severely amplifies errors because I (y) is, in effect, given at some discrete positions
through experimental observation data with inevitable measurement errors. To overcome this
drawback, it is therefore most desirable to obtain an accurate, stable and fast method for
computing Abel inversion, and to date many methods have been proposed for this purpose.

One approach is to employ the curve fitting techniques such as the least-squares
polynomial fit [8–10], which are able to affect the true curve due to the treatment of smoothing
experimental data. Another approach is to expand the desired inverse with respect to a chosen
basis including various orthogonal polynomials [11, 12], and then determine coefficients
by inserting the expansion into Abel’s integral equations. Based on the integral transform
methods, Abel’s integral equations can be converted to computing two infinite integrals
involving a Bessel function [13–15]. In addition, a conventional slice-and-stack method [16]
and its modification [17] have also been set forth. On the other hand, by integration by parts or
some manipulations, Abel inversion can be transformed to a form of derivative-free integral,
but the integral involved is related to higher order singularity [18, 19]. Just pointed out in [20],
the explicit differentiation in the standard inversion is obviated, but the derived formulae are
in fact equivalent to a half-differentiation and also ill-posed. The above-mentioned methods
can be categorized into two classes: one using analytical expressions [21, 22] and the other
mainly depending on numerical techniques [23, 24].
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In this study, we present a novel, simple, fast and efficient approach for solving
approximate inversion of Abel transform. The obtained formula is given in terms of the
integrals of input measured radiation intensity I (y), so that amplification of measurement
errors can be efficiently avoided. Moreover, the resulting approximation of Abel inversion can
be simply performed by symbolic computation at any personal computer. Also, the nth-order
approximation gn(r) of Abel inversion is identical to the exact noise-free emission coefficient
g(r) when g(r) is a polynomial in r2 of degree n. Error of approximate Abel inversion is
analysed. Finally, test examples turn out that this method is quite stable without resort to other
data-smoothing techniques.

2. Method

Due to symmetry of the problem in question, g(r) is even with respect to r and we expand
g(r) as a generalized Taylor–Stieltjes polynomial in r2 with a remainder, i.e.,

g(r) = g(y) +
n∑

j=1

g
(j)

β (y)

j !
(r2 − y2)j +

g
(n+1)
β (ξ)

(n + 1)!
(r2 − y2)n+1, (3)

where ξ denotes a point between r and y, and g′
β(y) stands for the first-order Stieltjes derivative

of g(y), defined by [25]

g′
β(y0) = lim

y→y0

g(y) − g(y0)

y2 − y2
0

, (4)

and higher order Stieltjes derivatives g
(j)

β (y)(j � 2) are similarly defined as

g
(j+1)

β (y0) = lim
y→y0

g
(j)

β (y) − g
(j)

β (y0)

y2 − y2
0

. (5)

If g
(n+1)
β (y) is bounded, the last remainder term is sufficiently small for an enough large

n. In practical applications, this condition is readily satisfied. Therefore, in what follows we
neglect this remainder term, and approximate g(r) as

g(r) ≈ g(y) +
n∑

j=1

g
(j)

β (y)

j !
(r2 − y2)j . (6)

It is worth noting that the above nth-order approximation is exact for a polynomial in r2 of
degree equal to or less than n.

Substituting (6) for g(r) into equation (1), one can get

I (y) = 2
∫ 1

y

r√
r2 − y2

g(y) +
n∑

j=1

g
(j)

β (y)

j !
(r2 − y2)j

 dr, (7)

or further

I (y) =
n∑

j=0

g
(j)

β (y)

j !(j + 0.5)
(1 − y2)j+0.5, (8)

where

g
(0)
β (y) = g(y).

We take g(y), g′
β(y), . . . , g

(n)
β (y) as n + 1 independent unknowns. In order to determine

them, we still need n other independent linear equations, and g(y), g′
β(y), . . . , g

(n)
β (y) are
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therefore determined by solving a system of linear equations for them. This can be achieved
by multiplying both sides of equation (1) by y and integrating both sides of equation (1) with
respect to y from x to 1. Accordingly, we get that∫ 1

x

yI (y) dy = 2
∫ 1

x

y

∫ 1

y

rg(r)√
r2 − y2

dr dy. (9)

Changing the order of the integration on the right-hand side of equation (9), we have∫ 1

y

rI (r) dr = 2
∫ 1

y

rg(r)
√

r2 − y2 dr, (10)

where we have replaced variable x with y in the last step of above derivation, for convenience.
Applying Taylor–Stieltjes expansion again and substituting (6) for g(r) into equation (10)

gives ∫ 1

y

rI (r) dr = 2
∫ 1

y

r
√

r2 − y2

g(y) +
n∑

j=1

g
(j)

β (y)

j !
(r2 − y2)j

 dr, (11)

or ∫ 1

y

rI (r) dr =
n∑

j=0

g
(j)

β (y)

j !(j + 1.5)
(1 − y2)j+1.5. (12)

Now we have arrived at another linear equation for g(y), g′
β(y), . . . , g

(n)
β (y). By repeating

the above integration process for n − 1 times, one can arrive at

1

(i − 1)!

∫ 1

y

rI (r)(r2 − y2)i−1 dr = 2i

(2i − 1)!!

∫ 1

y

rg(r)(r2 − y2)i−0.5 dr,

i = 2, 3, . . . , n. (13)

Putting (6) for g(r) into the above equation yields∫ 1

y

r(r2 − y2)i−1I (r) dr = (2i − 2)!!

(2i − 1)!!

n∑
j=0

g
(j)

β (y)

j !(i + j + 0.5)
(1 − y2)i+j+0.5,

i = 2, 3, . . . , n. (14)

Therefore, equations (8), (12) and (14) form a systems of n + 1 linear equations for n + 1
unknowns g

(j)

β (y)(j = 0, 1, . . . , n), which can be rewritten in a compact form as

AnnGn= bn, (15)

with

Ann = (aij (y))(n+1)×(n+1), Gn =
(

g
(i)
β (y)

i!

)
(n+1)×1

, bn = (bi(y))(n+1)×1, (16)

where

aij (y) =


(1 − y2)j+0.5

j + 0.5
, i = 0, 0 � j � n,

(2i − 2)!!

(2i − 1)!!

(1 − y2)i+j+0.5

(i + j + 0.5)
, i > 0, 0 � j � n,

(17)

bi(y) =


I (y), i = 0,∫ 1

y

r(r2 − y2)i−1I (r) dr, 1 � i � n.
(18)
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Introducing

Cnn(x) =


1
x

1
x+1 · · · 1

x+n

1
x+1

1
x+2 · · · 1

x+1+n

...
...

. . .
...

1
x+n

1
x+n+1 · · · 1

x+2n

 , (19)

it is easily verified that det(Cnn(x)) �= 0 for any positive x, the proof of which is given in the
appendix. Furthermore, one can get

det(Ann) = u(n+1)(2n+1) det(Cnn(0.5))

n∏
i=1

(2i − 2)!!

(2i − 1)!!
, (20)

and so det(Ann) �= 0. Here and hereinafter, we denote

u =
√

1 − y2. (21)

By using the well-known Cramer’s rule, one immediately finds that the solution to equation (15)
can be determined. In particular, we obtain the nth-order approximation of the exact solution
to equation (1) denoted as gn(y) as follows:

gn(y) = 1

u det(Cnn(0.5))

∣∣∣∣∣∣∣∣∣∣

I (y) 1
1.5 · · · 1

n+0.5

u−2b1(y) 1
2.5 · · · 1

n+1.5
...

...
. . .

...
(2n−1)!!
(2n−2)!!u

−2nbn(y) 1
n+1.5 · · · 1

2n+0.5

∣∣∣∣∣∣∣∣∣∣
. (22)

Moreover, this nth-order approximation is exact for a solution of polynomial in y2 of
degree equal to or less than n.

3. Error analysis

To give an error analysis of the above-derived approximation, let us assume that the exact
solution to be determined is infinitely differentiable with respect to r2. In other words, we can
write

g(r) = g(y) +
∞∑

j=1

g
(j)

β (y)

j !
(r2 − y2)j . (23)

Furthermore, generalized Taylor–Stieltjes derivatives of any order, g
(j)

β (y), of g(y) are
assumed to be continuous and bounded in an interval of interest. Or rather, there exists a
positive constant Cn such that∣∣g(j)

β (y)
∣∣ � Cn, j � n. (24)

Clearly, the following relations

C0 � C1 � · · · � Cn � · · · (25)

hold. For convenience, we denote this class of such functions g as C∞
β .

Similar to the preceding treatment, Abel’s integral equation can be transformed to the
following equivalent infinitely linear system of unknown g

(j)

β (y), j = 0, 1, . . . ,

AG = b, (26)
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with

A = lim
n→∞ Ann, G = lim

n→∞ Gn, b = lim
n→∞ bn, (27)

where Ann, Gn and bn are defined as before.
To evaluate the difference between the solutions to equations (15) and (26), following

Ursell [26] we also rewrite equation (15) as an infinite linear system of the form

A∗G∗= b∗ (28)

such that

A∗ =
(

Ann 0n∞
0∞n U∞∞

)
, G∗ =

(
Gn

G̃

)
, b∗ =

(
bn

b̃

)
, (29)

where 0n∞ and 0∞n stand for zero matrices with infinite columns and infinite rows, respectively,
U∞∞ the infinite unity matrix, G̃ and b̃ are relevant functions. If denoting M = A − A∗, one
gets

M =
(

0nn An∞
A∞n M∞∞

)
. (30)

Now, considering (27) we take b∗ = b, corresponding to an input function without noise,
and subtract (28) from (26), yielding

AG − A∗G∗ = 0, (31)

which can be further rewritten as

A∗(G − G∗) = −(A − A∗)G. (32)

Taking into account that Ann is non-singular, and so is A∗, from the above equation one
can find

G − G∗ = −(A∗)−1(A − A∗)G, (33)

which further allows us to derive

G − G∗ = −
(

0nn A−1
nn An∞

A∞n M∞∞

)
G. (34)

Introducing

H = A−1
nn An∞ = (hij )n×∞, say,

remembering (16) and (27) we get the first element of the vector on the left-hand side of (34)
expressed by

g(y) − gn(y) = −
∞∑

j=0

h0j

(j + n + 1)!
g

(j+n+1)

β (y). (35)

Therefore, in view of (24), we immediately get an error of the nth-order approximation as

|g(y) − gn(y)| � eCn+1

(n + 1)!
max
j�0

(|h0j |) � eC0

(n + 1)!
max
j�0

(|h0j |). (36)

In particular, if the exact solution g(y) is a polynomial in y2 of degree equal to or less than
n, then Cn+1 = 0 can be derived, which means that the exact solution g(y) is identical to the
nth-order approximation gn(y), i.e.

g(y) = gn(y). (37)
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Next, let us consider the case of an input function with noise. In this case, we take

b∗ = b + ε, (38)

with

ε =



ε(y)∫ 1
y

rε(r) dr

...∫ 1
y

r(r2 − y2)i−1ε(r) dr

...


, (39)

where ε(y) denotes random noise. From the above, other elements are clearly expressed by
the integrals of ε(y).

In a similar fashion, by subtracting (28) from (26), one obtains

AG − A∗G∗ = −ε, (40)

from which one further gets

G∗ − G =
(

0nn A−1
nn An∞

A∞n M∞∞

)
G+

(
A−1

nn 0n∞
0∞n U∞∞

)
ε. (41)

Obviously, the first part of the right-hand side corresponds to the error between the exact
solution and the nth-order approximation in the absence of noise, and the second part describes
the error induced by random noise. Restricting our attention to the first element of G∗ − G
gives a desired accuracy of the approximate Abel inversion in the presence of noise.

Note that although the function g(r) considered in this section is assumed to be even and
infinitely differentiable with respect to r2, practical application to be given in the following
section indicates that such a constraint can be further relaxed. The present method is also
suitable for a function with odd power, a piecewise function, and a non-polynomial function.

4. Test examples

In this section, to examine the effectiveness of the suggested method, several test examples
used frequently in plasma diagnostics to assess the performance of Abel inversion are given
as follows

Example 1 [10, 27, 29]

g(r) = 1
2 (1 + 10r2 − 23r4 + 12r6),

I (y) = 8
105u(19 + 34y2 − 125y4 + 72y6).

Example 2 [12, 13, 19, 21, 22, 28, 29]

g(r) =
{

1 − 2r2, 0 � r � 0.5,

2(1 − r)2, 0.5 < r � 1,

I (y) =


4u

3
(1 + 2y2) − 2v

3
(1 + 8y2) − 4y2 ln

1 + u

0.5 + v
, 0 � r � 0.5,

4

3
(1 + 2y2)u − 4y2 ln

1 + u

y
, 0.5 < r � 1.
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Example 3 [12, 27, 29]

g(r) = (1 − r2)−3/2 exp

[
1.12

(
1 − 1

1 − r2

)]
,

I (y) =
√

π

1.1u
exp

[
1.12

(
1 − 1

1 − y2

)]
.

Example 4 [15, 24, 29]

g(r) =
{

0.1 + 5.51r − 5.25r3, 0 � r � 0.7,

−40.74 + 155.56r − 188.89r2 + 74.07r3, 0.7 < r � 1,

I (y) =
22.68862u∗ + 217.557u∗y2 − 59.49y4 ln

0.7 + u∗

y
+ I ∗(y), 0 � r � 0.7,

I ∗(y), 0.7 < r � 1,

with

I ∗(y) = −14.811 667u − 196.300 83uy2 + y2

(
155.56 ln

1 + u

0.7 + u∗ + 55.5525y2 ln
1 + u

y

)
.

Example 5 [29, 30]

g(r) = 1 − 3r2 + 2r3,

I (y) = u

(
1 − 5

2
y2

)
+

3

2
y4 ln

1 + u

y
.

In the above examples u =
√

1 − y2, u∗ =
√

0.72 − y2, v =
√

(1 − 4y2)/4. It is noted that in
the fourth example, two misprints in the expression for I (y) given in [29] have been corrected.

In the above examples, the emission coefficient g(r) in the first example is an even
function, and has off axis peak. For this example, we find that the reconstruction gn(r) of g(r)

when n � 3 is identical to the exact emission coefficient g(r), which implies the effectiveness
of this method. Moreover, by symbolic computation, the derived reconstruction g3(r) ≡ g(r)

due to g(r) being a polynomial in r2 of degree 3, as expected. The emission coefficient g(r) in
example 5 is an odd function having cubic dependence, and the remaining three examples are
not usual polynomials, standing for various profiles of the emission coefficient. The profiles of
all five emission coefficients are displayed in figure 2. Due to g(r) not being a polynomial in
r2, unlike example 1, the true g(r) for the last four examples cannot be reconstructed exactly.
Even this, we still can adopt the present method to reconstruct g(r) to a satisfactory accuracy.

In what follows, a unity interval is partitioned into N equally spaced subintervals. To
examine the accuracy and efficiency of the above results, we define the root mean square error
and the relative residual by

σn =
√√√√ 1

N

N−1∑
j=0

[gn(rj ) − g(rj )]2, (42)

�n =
∑N−1

j=0 |gn(rj ) − g(rj )|∑N−1
j=0 g(rj )

(43)

respectively, gn(rj ) and g(rj ) being the reconstructed emission coefficients and the
corresponding exact emission coefficients at N discrete positions, respectively. Note that
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Examples
 #1
 #2
 #3
 #4
 #5

Figure 2. The theoretical values of the emission coefficient g(r) of four examples considered.

Table 1. σn and �n of four examples without noise with N = 30.

Example 1 Example 2 Example 3 Example 4 Example 5

n σn �n σn �n σn �n σn �n σn �n

2 0.0777 0.084 0.0068 0.0100 0.0290 0.0286 0.0323 0.0524 0.0091 0.0121
3 0 0 0.0076 0.0100 0.0271 0.0276 0.0205 0.0305 0.0028 0.0032
4 0 0 0.0029 0.0039 0.0086 0.0084 0.0151 0.0209 0.0012 0.0012
5 0 0 0.0014 0.0017 0.0044 0.0045 0.0056 0.0081 0.0006 0.0006

gn(1) = 0 can be deduced provided I (y) = o(u) as y → 1; consequently gn(rN) = g(rN) = 0
at rN = 1, removed from (42) and (43), for the practical case I (1) = 0.

In our computations, we first take n = 2, 3, 4, 5 and perform Abel inversion without
any noisy input. Evaluated results of the root mean square error and the relative residual are
tabulated in table 1. From table 1, σn and �n decrease with n increasing except for example 2
when n = 3. Nevertheless, for the latter case the maximum absolute errors indeed decrease
as n is raised. To manifest the discrepancy of the theoretical true values and the evaluated
values, a difference between the exact g(r) and the nth approximation gn(r), gn(r) − g(r),

is shown for several lower n for example 2 in figure 3. Clearly, from figure 3 it is seen that
with n increasing, the maximum absolute errors remarkably decrease. It should be noted
that although g(r) is not infinitely differentiable at r = 0.5 for example 2 and r = 0.7 for
example 4, respectively, the present method is still efficient.

On the other hand, we find that when N takes a larger value, the accuracy of the
evaluated results cannot be improved evidently. For example, for example 3 we get
σ3 = 0.0268,�3 = 0.0275 when taking N = 100 and σ3 = 0.0267,�3 = 0.0274 when
taking N = 300. Such a conclusion is due to the fact that the reconstructed gn(r) is determined
analytically, directly dependent on n and not on N. The contribution of N only occurs in
transforming the integrals appearing in bi(y) in (22) to a finite summation. In other words,
once a smaller N gives an enough accurate result of integrals in (18) relative to bi(y), another
larger N does not remarkably improve the accuracy of the numerical evaluation of integrals. Of
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0.0 0.2 0.4 0.6 0.8 1.0
-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015
 n=2
 n=3
 n=4
 n=5
 n=6
 n=7

g n(r
)-

g(
r)

r

Figure 3. Difference between the exact emission coefficient g(r) with its reconstruction gn(r) for
example 2.

Table 2. σn and �n of four examples with noise (case A) with N = 30.

Example 1 Example 2 Example 3 Example 4 Example 5

n σn �n σn �n σn �n σn �n σn �n

2 0.0799 0.0867 0.0074 0.0121 0.0298 0.0299 0.0336 0.0543 0.0111 0.0195
3 0.0077 0.0085 0.0084 0.0131 0.0283 0.0293 0.0228 0.0344 0.0091 0.0151
4 0.0092 0.0096 0.0079 0.0131 0.0131 0.0132 0.0185 0.0261 0.0106 0.0178
5 0.0121 0.0121 0.0101 0.0155 0.0115 0.0113 0.0119 0.0182 0.0136 0.0218

course, σn and �n drop only if the order of approximation increases. This feature is different
from that via numerical techniques for determining Abel inversion [15]. For the latter case,
N is often required larger than 100 [29] so that �n < 0.01. In the following computations, for
simplicity we take N = 30.

To simulate true measurement data with random noise, we take measured radiation
intensity as Iε(y) instead of I (y), and two different cases are analysed. Case A corresponds to
Iε(y) consisting of the same I (y) values rounded off to the second decimal place, and case B
to Iε(y) = I (y)[1 + ε0θ(y)], where ε0 is a small constant and θ(y) denotes a uniform random
variable with values in [−1, 1], which can be generated by a computer based on random-
number generator at discrete N positions. Furthermore, we employ cubic spline function to fit
Iε(y) to guarantee a smooth curve, and then using this curve or its values at certain positions,
calculate integrals in Abel inversion given by (22). For case A, evaluated σn and �n are listed
in table 2. From table 2, it is observed that the obtained results are still reasonable in the
presence of noise. In particular, with an increase of n, σn and �n decline for examples 3 and
4. In contrast, when n arrives at a so-called optimal value, n = 3 for examples 1 and 5 and
n = 4 for example 2, σn and �n slightly rise if n continues to increase. This phenomenon is
similar to that in [29], and however, the order n of approximation gn(r) here is much less than
the order of fitting polynomial in [29]. Additionally, from the results of example 2 in table 2,
one can see that the accuracy based on the present method is higher than that of [19] where
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Figure 4. Comparison of the exact emission coefficient g(r) with its three-order reconstruction
g3(r) for example 4 (case B) with ε0 = 0%, 1%, 3% added noise.
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Figure 5. Comparison of the exact emission coefficient g(r) with its fourth-order reconstruction
g4(r) for example 4 (case B) with ε0 = 0%, 1%, 3% added noise.

σ = 0.0155, greater than all values of σn(n = 2, . . . , 5) of example 2 in table 2. Furthermore,
an inspection of table 2 indicates that two introduced parameters describing the accuracy of
reconstruction, σn and �n, are consistent.

For case B with random noise, we only consider example 4, and the reason for this
selection is that it has the deepest dip at the centre and the reconstructed profile is more
susceptible in the presence of noise. In the following computations, we take n = 3, 4, and
ε0 = 0%, 1%, 3%, a comparison of g(r) and gn(r) is plotted in figures 4 and 5 for n = 3, 4,
respectively. From figures 4 and 5, one can see that the reconstruction is extremely good in
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the region of 0.7 < r < 1, even in the presence of noise. When r goes across the joint-point
of the piecewise function, and lies in the region of 0 < r < 0.7, the reconstructed gn(r)

is also satisfactory, which does not deteriorate the theoretical curve g(r), especially for the
vicinity of the r = 0. However, for usual techniques for Abel inversion, the reconstructed
curve drastically deviates from the theoretical curve near the source centre since the greatest
error takes place in the source centre as a consequence of noise propagating from the edge to
the source centre [31].

5. Conclusion

This paper presents a novel technique for Abel inversion with noise. The suggested Abel
inversion is expressed by the integral of the input data function, and its remarkable advantage
is without any artificial smoothing process for raw data. The reconstruction of emission
coefficient according to Abel inversion is stable, even for measured radiation intensity I (y)

with random noise. An error between Abel inversion and its approximation is analysed.
Obtained results for test examples turn out that this method is very effective for measured
radiation intensity I (y), even in the case of the presence of noise.
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Appendix

Lemma. Suppose the matrix

Cnn(x) =


1
x

1
x+1 · · · 1

x+n

1
x+1

1
x+2 · · · 1

x+1+n

...
...

. . .
...

1
x+n

1
x+n+1 · · · 1

x+2n

 , (A.1)

then for an arbitrary non-negative integer n, the determinant det(Cnn(x)) �= 0 for arbitrary
positive x.

Proof. First, by setting n = 0 and 1, we can easily get that det(C00(x)) = 1/x, and
det(C11(x)) = [x(2+x)]−1−(1+x)−2, respectively; so det(C00(x)) �= 0, and det(C11(x)) �= 0
for x > 0.

Second, for k = n − 1, one assumes det(Cn−1,n−1(x)) �= 0. Then for k = n, from (A.1)
one readily finds

det(Cnn(x)) = 1

(n + x) · · · (2n + x)

∣∣∣∣∣∣∣∣∣∣

n+x
x

n+x
x+1 · · · 1

n+1+x
x+1

n+1+x
x+2 · · · 1

...
...

. . .
...

x+2n
x+n

x+2n
x+n+1 · · · 1

∣∣∣∣∣∣∣∣∣∣
. (A.2)
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Furthermore, the first n columns subtract the last column, and a further simplification allows
us to obtain

det(Cnn(x)) = 1

n!(n + x) · · · (2n + x)

∣∣∣∣∣∣∣∣∣∣

1
x

1
x+1 · · · 1

1
x+1

1
x+2 · · · 1

...
...

. . .
...

1
x+n

1
x+n+1 · · · 1

∣∣∣∣∣∣∣∣∣∣
. (A.3)

A similar manipulation for rows can lead to

det(Cnn(x)) = 1

n!(n + x)2 · · · (2n − 1 + x)2(2n + x)

∣∣∣∣∣∣∣∣∣∣

n+x
x

n+x+1
x+1 · · · 1

n+x
x+1

n+1+x
x+2 · · · 1

...
...

. . .
...

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣
. (A.4)

Now, all columns except for the last column subtract the last column, leading to

det(Cnn(x)) = 1

n!n!(n + x)2 · · · (2n − 1 + x)2(2n + x)

∣∣∣∣∣∣∣∣∣∣

1
x

1
x+1 · · · 1

1
x+1

1
x+2 · · · 1

...
...

. . .
...

0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣
= 1

n!n!(n + x)2 · · · (2n − 1 + x)2(2n + x)
det(Cn−1,n−1(x)). (A.5)

Consequently, det(Cnn(x)) �= 0 for x > 0 follows immediately from the assumption of
det(Cn−1,n−1(x)) �= 0 for x > 0. Therefore, based on induction we have det(Cnn(x)) �= 0 for
an arbitrary non-negative integer n. �
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Corrigendum

A new Abel inversion by means of the integrals of an input function with noise
Li X-F, Huang L and Huang Y 2007 J. Phys. A: Math. Theor. 40 347–360

Example 4 given in the paper [1] was mistyped and should read

g(r) =
{

0.1 + 5.51r2 − 5.25r3, 0 � r � 0.7,

−40.74 + 155.56r − 188.89r2 + 74.07r3, 0.7 < r � 1,

I (y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
22.688 62u∗ + 217.557u∗y2 − 59.49y4 ln

0.7 + u∗

y
+ 155.56y2 ln

1 + u

0.7 + u∗ + I ∗(y),

0 � r � 0.7

I ∗(y) + 155.56y2 ln
1 + u

y
, 0.7 < r � 1,

with

I ∗(y) = −14.811 667u − 196.300 83uy2 + 55.5525y4 ln
1 + u

y

The authors apologize for any inconvenience. However, the authors would like to assure
readers that these are merely misprints and as such do not affect the results presented in the
paper [1] since they were evaluated and compared according to the above correct version.
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